Semi-supervised Learning by Sparse Representation
نویسندگان
چکیده
In this paper, we present a novel semi-supervised learning framework based on `1 graph. The `1 graph is motivated by that each datum can be reconstructed by the sparse linear superposition of the training data. The sparse reconstruction coefficients, used to deduce the weights of the directed `1 graph, are derived by solving an `1 optimization problem on sparse representation. Different from conventional graph construction processes which are generally divided into two independent steps, i.e., adjacency searching and weight selection, the graph adjacency structure as well as the graph weights of the `1 graph is derived simultaneously and in a parameter-free manner. Illuminated by the validated discriminating power of sparse representation in [16], we propose a semi-supervised learning framework based on `1 graph to utilize both labeled and unlabeled data for inference on a graph. Extensive experiments on semi-supervised face recognition and image classification demonstrate the superiority of our proposed semi-supervised learning framework based on `1 graph over the counterparts based on traditional graphs.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملEnhanced low-rank representation via sparse manifold adaption for semi-supervised learning
Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...
متن کاملSemi-supervised Data Representation via Affinity Graph Learning
We consider the general problem of utilizing both labeled and unlabeled data to improve data representation performance. A new semi-supervised learning framework is proposed by combing manifold regularization and data representation methods such as Non negative matrix factorization and sparse coding. We adopt unsupervised data representation methods as the learning machines because they do not ...
متن کاملRobust Image Analysis by L1-Norm Semi-supervised Learning
This paper presents a novel L1-norm semisupervised learning algorithm for robust image analysis by giving new L1-norm formulation of Laplacian regularization which is the key step of graph-based semi-supervised learning. Since our L1-norm Laplacian regularization is defined directly over the eigenvectors of the normalized Laplacian matrix, we successfully formulate semi-supervised learning as a...
متن کاملSparse Geodesic Paths
In this paper we propose a new distance metric for signals that admit a sparse representation in a known basis or dictionary. The metric is derived as the length of the sparse geodesic path between two points, by which we mean the shortest path between the points that is itself sparse. We show that the distance can be computed via a simple formula and that the entire geodesic path can be easily...
متن کامل